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Abstract. In our paper (Dobrev V K and Parashar P 1993J. Phys. A: Math. Gen.26 6991–
7002) we have constructed the Hopf algebraU as dual to the quantum group deformation ofGL(n)

(depending on 1 +n(n − 1)/2 parameters), and we have shown thatU has one-generator central
Hopf subalgebra and a commutation subalgebraU ′ which is a Drinfeld–Jimbo-like deformation
of U(sl(n)), but which is not a Hopf subalgebra since its coproducts depend also on the central
generator. In this addendum we show thatU ′ is a Hopf subalgebra, besides the trivial case of
coinciding parameters, also for a special choice of the parameters, so that there would be only
1 + (n− 1)(n− 2)/2 independent parameters.

In the main text [1] we have constructed the Hopf algebraU ≡ Uuq as the dual to the
multiparameter matrix quantum groupGLuq(n) (depending on the parameteru andn(n−1)/2
parametersq = {qij |j − i > 0}) and we have shown thatU may be split in the form:
Uu,q(sl(n,C)) ⊗ Uu(Z), whereZ is one-dimensional spanned by the generatorK (cf (29))
andUu(Z) is a central Hopf subalgebra ofU , while U ′ = Uu,q(sl(n,C)) is a deformation of
U(sl(n,C))which is of Drinfeld–Jimbo form with deformation parameteru as a commutation
subalgebra ofU . However,U ′ is not a Hopf subalgebra ofU since the coproducts ofU ′ depend
also on the generatorK. Furthermore, these coproducts depend on all parametersu andq. We
have also noticed thatU ′ is a Hopf subalgebra if all parameters coincide.

In this addendum we show thatU ′ is a Hopf subalgebra also for a special choice of the
parameters, so that there would be only 1 +(n− 1)(n− 2)/2 independent parameters:u and
q̃ = {qij |j−i > 1}. In this special case the central generatorK decouples from the coproducts
of the generators ofU ′ = Uu,q̃(sl(n,C)) as in the one-parameter deformation, however, these
coproducts depend also onq̃.

To make this explicit we first need to express the operatorsPi (cf (43), and through them
Qi , cf (45)) in terms of the generatorsHi andK. For this we first express the generatorsDi

throughHi andK:

Di = 1

n

(
K −

i−1∑
j=1

jHj +
n−1∑
j=i
(n− j)Hj

)
= K̂ + Ĥi

K̂ ≡ 1

n

(
K −

n−1∑
j=1

jHj

)
Ĥi ≡

n−1∑
j=i

Hj (Ĥn ≡ 0).

(A.1)
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Now we substitute (A.1) into (43) to obtain:

Pi = (q̃i )K̂
( i−1∏
s=1

(
qsi

qs,i+1

)Ĥs )( u2

qi,i+1

)Ĥi ( 1

qi,i+1

)Ĥi+1 n−1∏
t=i+2

(
qi+1,t

qit

)Ĥt
q̃i ≡

( i−1∏
s=1

qsi

qs,i+1

)
u2

q2
i,i+1

n∏
t=i+2

qi+1,t

qit
.

(A.2)

From the above expression it is clear that in order forK to decouple from the system the
n−1 constants̃qi should become equal to unity. This bringsn−1 conditions on the parameters
qij . It seems natural to use these conditions to fix then− 1 next-to-main-diagonal parameters
qi,i+1, and indeed, a natural choice for this exists, namely, we may set:

q0
i,i+1 ≡ ui(n−i)

∏
16s6i i+16t6n

s<t−1

q−1
st

= u
ĩ∏
s=1

n∏
t=i+1

u

qst
16 i 6 n− 1 (A.3)

where the tilde over the double product means that the cases = i = t − 1 should be omitted.
Then we obtain:

(q̃i )qi,i+1=q0
i,i+1
= 1 16 i 6 n− 1 (A.4)

and substituting this in the operatorsPi we get in terms ofĤi and in terms ofHi :

P̃i ≡ (Pi )qi,i+1=q0
i,i+1
=
( i−2∏
s=1

(
qsi

qs,i+1

)Ĥs )( u

qi−1,i+1

ĩ−1∏
s=1

n∏
t=i

u

qst

)Ĥi−1

×uĤi−Ĥi+1

( ĩ∏
s=1

n∏
t=i+1

qst

u

)Ĥi+Ĥi+1
(

u

qi,i+2

˜i+1∏
s=1

n∏
t=i+2

u

qst

)Ĥi+2 n−1∏
t=i+3

(
qi+1,t

qit

)Ĥt
=
( i−2∏
j=1

( j∏
s=1

qsi

qs,i+1

)Hj)(( i−1∏
s=1

u2

q2
s,i+1

) i−1∏
s=1

n∏
t=i+2

u

qst

)Hi−1

×
(
u

( i−1∏
s=1

u

qs,i+1

) n∏
t=i+2

qit

u

)Hi(( n∏
t=i+2

q2
it

u2

) i−1∏
s=1

n∏
t=i+2

qst

u

)Hi+1

×
( n−1∏
j=i+2

( n∏
t=j+1

qit

qi+1,t

)Hj)
. (A.5)

Thus, for the particular choiceqi,i+1 = q0
i,i+1 we have the splittingUuq̃ ∼= Uu,q̃(sl(n,C))⊗

Uu(Z) as tensor product of two Hopf subalgebras. Note thatUu,q̃(sl(n,C)) is a Hopf algebra
which is a deformation ofU(sl(n,C)), and is of Drinfeld–Jimbo form with deformation
parameteru as commutation algebra, but not as a coalgebra since the coproducts depend also
on q̃.
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