Duality for multiparametric quantum $G L(\boldsymbol{n})$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32443
(http://iopscience.iop.org/0305-4470/32/2/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:31

Please note that terms and conditions apply.

ADDENDUM

Duality for multiparametric quantum $G L(n)$

Vladimir K Dobrev $\dagger \S$ and Preeti Parashar \ddagger
\dagger Arnold Sommerfeld Inst. f. Math. Physics, Tech. Univ. Clausthal, Leibnizstrasse 10, 38678 Clausthal-Zellerfeld, Germany
\ddagger Departamento de Fisica, Universidad de Burgos, Plaza Misael Banuelos, 09001 Burgos, Spain

Received 12 October 1998

Abstract

In our paper (Dobrev V K and Parashar P 1993 J. Phys. A: Math. Gen. 26 69917002) we have constructed the Hopf algebra \mathcal{U} as dual to the quantum group deformation of $G L(n)$ (depending on $1+n(n-1) / 2$ parameters), and we have shown that \mathcal{U} has one-generator central Hopf subalgebra and a commutation subalgebra \mathcal{U}^{\prime} which is a Drinfeld-Jimbo-like deformation of $U(s l(n))$, but which is not a Hopf subalgebra since its coproducts depend also on the central generator. In this addendum we show that \mathcal{U}^{\prime} is a Hopf subalgebra, besides the trivial case of coinciding parameters, also for a special choice of the parameters, so that there would be only $1+(n-1)(n-2) / 2$ independent parameters.

In the main text [1] we have constructed the Hopf algebra $\mathcal{U} \equiv \mathcal{U}_{u q}$ as the dual to the multiparameter matrix quantum group $G L_{u q}(n)$ (depending on the parameter u and $n(n-1) / 2$ parameters $\boldsymbol{q}=\left\{q_{i j} \mid j-i>0\right\}$) and we have shown that \mathcal{U} may be split in the form: $U_{u, q}(s l(n, \mathbb{C})) \otimes U_{u}(\mathcal{Z})$, where \mathcal{Z} is one-dimensional spanned by the generator K (cf (29)) and $U_{u}(\mathcal{Z})$ is a central Hopf subalgebra of \mathcal{U}, while $\mathcal{U}^{\prime}=U_{u, q}(s l(n, \mathbb{C}))$ is a deformation of $U(\operatorname{sl}(n, \mathbb{C}))$ which is of Drinfeld-Jimbo form with deformation parameter u as a commutation subalgebra of \mathcal{U}. However, \mathcal{U}^{\prime} is not a Hopf subalgebra of \mathcal{U} since the coproducts of \mathcal{U}^{\prime} depend also on the generator K. Furthermore, these coproducts depend on all parameters u and \boldsymbol{q}. We have also noticed that \mathcal{U}^{\prime} is a Hopf subalgebra if all parameters coincide.

In this addendum we show that \mathcal{U}^{\prime} is a Hopf subalgebra also for a special choice of the parameters, so that there would be only $1+(n-1)(n-2) / 2$ independent parameters: u and $\tilde{\boldsymbol{q}}=\left\{q_{i j} \mid j-i>1\right\}$. In this special case the central generator K decouples from the coproducts of the generators of $\mathcal{U}^{\prime}=U_{u, \tilde{q}}(s l(n, \mathbb{C}))$ as in the one-parameter deformation, however, these coproducts depend also on $\tilde{\boldsymbol{q}}$.

To make this explicit we first need to express the operators \mathcal{P}_{i} (cf (43), and through them \mathcal{Q}_{i}, cf (45)) in terms of the generators H_{i} and K. For this we first express the generators D_{i} through H_{i} and K :

$$
\begin{align*}
D_{i} & =\frac{1}{n}\left(K-\sum_{j=1}^{i-1} j H_{j}+\sum_{j=i}^{n-1}(n-j) H_{j}\right)=\hat{K}+\hat{H}_{i} \tag{A.1}\\
\hat{K} & \equiv \frac{1}{n}\left(K-\sum_{j=1}^{n-1} j H_{j}\right) \quad \hat{H}_{i} \equiv \sum_{j=i}^{n-1} H_{j} \quad\left(\hat{H}_{n} \equiv 0\right) .
\end{align*}
$$

§ E-mail address: ptvd@pt.tu-clausthal.de

Now we substitute (A.1) into (43) to obtain:

$$
\begin{align*}
\mathcal{P}_{i} & =\left(\tilde{\boldsymbol{q}}_{i}\right)^{\hat{K}}\left(\prod_{s=1}^{i-1}\left(\frac{q_{s i}}{q_{s, i+1}}\right)^{\hat{H}_{s}}\right)\left(\frac{u^{2}}{q_{i, i+1}}\right)^{\hat{H}_{i}}\left(\frac{1}{q_{i, i+1}}\right)^{\hat{H}_{i+1}} \prod_{t=i+2}^{n-1}\left(\frac{q_{i+1, t}}{q_{i t}}\right)^{\hat{H}_{t}} \tag{A.2}\\
\tilde{\boldsymbol{q}}_{i} & \equiv\left(\prod_{s=1}^{i-1} \frac{q_{s i}}{q_{s, i+1}}\right) \frac{u^{2}}{q_{i, i+1}^{2}} \prod_{t=i+2}^{n} \frac{q_{i+1, t}}{q_{i t}} .
\end{align*}
$$

From the above expression it is clear that in order for K to decouple from the system the $n-1$ constants $\tilde{\boldsymbol{q}}_{i}$ should become equal to unity. This brings $n-1$ conditions on the parameters $q_{i j}$. It seems natural to use these conditions to fix the $n-1$ next-to-main-diagonal parameters $q_{i, i+1}$, and indeed, a natural choice for this exists, namely, we may set:

$$
\begin{align*}
q_{i, i+1}^{0} & \equiv u^{i(n-i)} \prod_{\substack{1 \leqslant s \leqslant i \\
s<t-1}} q_{s t}^{-1} \\
& =u \prod_{s=1}^{i} \prod_{t=i+1}^{n} \frac{u}{q_{s t}} \quad 1 \leqslant i \leqslant n-1 \tag{A.3}
\end{align*}
$$

where the tilde over the double product means that the case $s=i=t-1$ should be omitted. Then we obtain:

$$
\begin{equation*}
\left(\tilde{\boldsymbol{q}}_{i}\right)_{q_{i, i+1}=q_{i, i+1}^{0}}=1 \quad 1 \leqslant i \leqslant n-1 \tag{A.4}
\end{equation*}
$$

and substituting this in the operators \mathcal{P}_{i} we get in terms of \hat{H}_{i} and in terms of H_{i} :

$$
\begin{align*}
\tilde{\mathcal{P}}_{i} \equiv\left(\mathcal{P}_{i}\right)_{q_{i, i+1}=}= & \left(\prod_{i, i+1}^{0}\right. \\
& \left.\times u^{\hat{H}_{i}-\hat{H}_{i+1}}\left(\widetilde{\prod_{s=1}^{i-2}} \frac{q_{s i}}{q_{s, i+1}}\right)^{\hat{H}_{s}}\right)\left(\frac{u}{q_{i-1, i+1}} \prod_{s=1}^{i-1} \prod_{t=i}^{n} \frac{u}{q_{s t}}\right)^{\hat{H}_{i-1}} \\
= & \left.\left(\prod_{j=1}^{\hat{H}_{i}+\hat{H}_{i+1}}\left(\frac{u}{q_{i, i+2}} \prod_{s=1}^{i+1} \prod_{s=1}^{n} \frac{q_{s i}}{q_{s, i+1}}\right)^{H_{j}}\right)\left(\left(\prod_{s=1}^{i-1} \frac{u^{2}}{q_{s t}}\right)^{q_{s, i+1}}\right) \prod_{s=1}^{i-1} \prod_{t=i+3}^{\hat{H}_{i+2}}\left(\frac{\prod_{t=i+2}^{n}}{n-1} \frac{q_{i+1, t}}{q_{i t}}\right)^{\hat{H}_{t}}\right)^{H_{i-1}} \\
& \times\left(u\left(\prod_{s=1}^{i-1} \frac{u}{q_{s, i+1}}\right) \prod_{t=i+2}^{n} \frac{q_{i t}}{u}\right)^{H_{i}}\left(\left(\prod_{t=i+2}^{n} \frac{q_{i t}^{2}}{u^{2}}\right)^{i-1} \prod_{s=1}^{n} \frac{q_{s t}}{u}\right)^{H_{i+1}} \\
& \times\left(\prod_{j=i+2}^{n-1}\left(\prod_{t=j+1}^{n} \frac{q_{i t}}{q_{i+1, t}}\right)^{H_{j}}\right) . \tag{A.5}
\end{align*}
$$

Thus, for the particular choice $q_{i, i+1}=q_{i, i+1}^{0}$ we have the splitting $\mathcal{U}_{u \tilde{q}} \cong U_{u, \tilde{q}}(s l(n, \mathbb{C})) \otimes$ $U_{u}(\mathcal{Z})$ as tensor product of two Hopf subalgebras. Note that $U_{u, \tilde{q}}(s l(n, \mathbb{C}))$ is a Hopf algebra which is a deformation of $U(s l(n, \mathbb{C}))$, and is of Drinfeld-Jimbo form with deformation parameter u as commutation algebra, but not as a coalgebra since the coproducts depend also on $\tilde{\boldsymbol{q}}$.

References

